Results and conclusions of the tests

RS-485 9 Mbps Hello World
RS485 Hello World at 9 Mbps

After analyzing all the parts of LibreServo, I have decided to make several design changes again. I am happy with the results obtained with the test board since without it, it would have been impossible to analyze all the components separately and detect all the errors and faults that I have found, it is something that I should have done from the beginning and it would have saved me a lot of time. The topics to be discussed are:

  • Current Sensor
  • Protection against change of power polarity
  • New power supply, mpm3610 + ap2112
  • NTC temperature sensor
  • New more compact RGB led
  • RS-232 vs RS-485 serial communication
  • New AEAT-8800 magnetic sensor
  • H bridge
  • Next PCB (4 layers)

Power Analysis (MPM3610 + Ferrite + AP2112)

MPM3610 and AP2112 circuit with Ferrite MPM3610 and AP2112 circuit

One of the parts that I have changed the most in LibreServo and thought about is the power supplies. In previous versions it was a linear regulator that I reduced in size, but the truth is that I was not at all comfortable since if LibreServo was powered with only 12V, the linear regulator should dissipate up to 1.74 Watts and in 16v 2.54 Watts... something that was really unreal that it could handled.

A few months ago I discovered the MPM3610, and this finally made it possible for me to design the power supply as I wanted. This tiny component is a powerful 1.2A step-down that supports up to 21V input and also has a built-in diode and coil! It is the latter that makes it perfect for my design, due to the reduced space used, being the only step-down that is manufactured that has an integrated coil and diode in the same package. The difference between using a step-down and a linear regulator is that a linear regulator from 3.3V to 12V gives an efficiency of 35%, while a step-down of 80% or higher, the rest is dissipated in heat, so one is much more prone to overheating than the other. The downside of using a step-down is that they are quite noisy and their output is not as clean as one from a linear regulator.

Análisis del sensor de corriente ZXCT1010

Circuito básico ZXCT1010 con protección Zener MMSZ5226BS Circuito básico ZXCT1010 con protección Zener

El primer componente que voy a analizar en mi nueva placa para testear LibreServo es el sensor de corriente ZXCT1010, el cual es una versión mejorada del sensor ZXCT1009. La mejora sobre todo es en la parte baja del sensor, cuando hay poca caída en Rsense, parte en la que quería estar ya que no quiero que se desperdicie tensión en Rsense. Además, aparejado al sensor de corriente está el diodo Zener MMSZ5226BS para evitar que la tensión de salida del sensor de corriente pueda superar los 3,3V y quemar el microcontrolador.